當前位置:首頁 ? 公司動態(tài) ? DPC陶瓷基板制作技術和應用
DPC又稱直接鍍銅陶瓷基板,由陶瓷基片和布線金屬層兩部分組成。封裝基板起著承上啟下,連接內(nèi)外散熱通道的關鍵作用,同時兼有電互連和機械支撐等功能。陶瓷熱導率高、耐熱性好、機械強度高、熱膨脹系數(shù)低,是功率半導體器件封裝常用的基板材料。今天小編只要簡述DPC陶瓷基板的材料、制作技術和應用。
DPC陶瓷基板材料主要有Al2O3、BeO、AlN、Si3N4、SiC等基片。不同的陶瓷基片各有不同。
01、Al2O3陶瓷基板
Al2O3陶瓷基板由于價格低廉、力學性能較好,而且工藝技術純熟,是目前應用最為廣泛的陶瓷基板材料。但是Al2O3陶瓷的熱導率較低(24W/(m·k)),在一定程度上限制了其在大功率電子產(chǎn)品中的應用。
02、AlN陶瓷基板
AlN陶瓷作為一種新型的LED封裝基板材料,具有熱導率高(其理論熱導率可達320W/(m·k))、強度高、熱膨脹系數(shù)低、介電損耗小、耐高溫及化學腐蝕,而且無毒環(huán)保等優(yōu)良性能,是被國內(nèi)外一致看好最具發(fā)展前景的一種陶瓷材料。
03、SiC陶瓷基板
SiC陶瓷具有很高的熱導率,熱膨脹系數(shù)也與Si接近,而且SiC的物理性能較好,具有高耐磨性和高硬度,但是SiC是強共價鍵化合物,燒結(jié)溫度高達2000多攝氏度,而且需要加入少量的燒結(jié)助劑才能燒結(jié)致密,導致SiC陶瓷基板制備能耗大,生產(chǎn)成本高。
04、BeO陶瓷基板
BeO陶瓷導熱性能優(yōu)良,綜合性能良好,能夠滿足較高的電子封裝要求,但是其熱導率隨溫度波動變化較大,溫度升高其熱導率大幅下降。此外,BeO有劇毒,已逐漸淡出封裝應用領域。
05、Si3N4陶瓷基板
Si3N4陶瓷的熱導率與抗彎強度較高,能滿足集成電路向高集成化、多層化、輕型化等特性發(fā)展,另外Si3N4陶瓷的強度和斷裂韌性較高,耐熱疲勞性能良好,是一種有著良好發(fā)展前景的高熱導率高強度陶瓷基板材料。
DPC陶瓷基板工藝流程
DPC陶瓷基板其制作首先將陶瓷基片進行前處理清洗,利用真空濺射方式在基片表面沉積Ti/Cu層作為種子層,接著以光刻、顯影、刻蝕工藝完成線路制作,最后再以電鍍/化學鍍方式增加線路厚度,待光刻膠去除后完成基板制作。
DPC陶瓷基板制作技術流程
優(yōu)點:
(1)低溫工藝(300℃以下),完全避免了高溫對材料或線路結(jié)構的不利影響,也降低了制造工藝成本。
(2)采用薄膜與光刻顯影技術,使基板上的金屬線路更加精細(線寬尺寸20~30μm,表面平整度低于0.3μm,線路對準精度誤差小于±1%),因此DPC基板非常適合對準精度要求較高的電子器件封裝。
缺點:
(1)電鍍沉積銅層厚度有限,且電鍍廢液污染大;
(2)金屬層與陶瓷間的結(jié)合強度較低,產(chǎn)品應用時可靠性較低;
(3)電鍍生長速度低,線路層厚度有限(一般控制在10μm~100μm),難以滿足大電流功率器件封裝需求。
1、金屬線路層與陶瓷基片的結(jié)合強度
由于金屬與陶瓷間熱膨脹系數(shù)差較大,為降低界面應力,需要在銅層與陶瓷間增加過渡層,從而提高界面結(jié)合強度。由于過渡層與陶瓷間的結(jié)合力主要以擴散附著及化學鍵為主,因此常選擇Ti、Cr和Ni等活性較高、擴散性好的金屬作為過渡層(同時作為電鍍種子層)。
2、電鍍填孔
電鍍填孔也是DPC陶瓷基板制備的關鍵技術。目前DPC基板電鍍填孔大多采用脈沖電源,其技術優(yōu)勢包括:易于填充通孔,降低孔內(nèi)鍍層缺陷;表面鍍層結(jié)構致密,厚度均勻;可采用較高電流密度進行電鍍,提高沉積效率。
1、LD封裝
激光二極管(LD)又稱半導體激光器,是一種基于半導體材料受激輻射原理的光電器件,具有體積小、壽命長、易于泵浦和集成等特點。廣泛應用于激光通信、光存儲、光陀螺、激光打印、測距以及雷達等領域。溫度與半導體激光器的輸出功率有較大關系。散熱是LD封裝關鍵。由于LD器件電流密度大,熱流密度高,陶瓷基板成為LD封裝的首選熱沉材料。
2、IGBT封裝
絕緣柵雙極晶體管以輸入阻抗高、開關速度快、通態(tài)電壓低、阻斷電壓高等特點,成為當今功率半導體器件發(fā)展主流。其應用小到變頻空調(diào)、靜音冰箱、洗衣機、電磁爐、微波爐等家用電器,大到電力機車牽引系統(tǒng)等。由于IGBT輸出功率高,發(fā)熱量大,因此對IGBT封裝而言,散熱是關鍵。目前IGBT封裝主要采用DBC陶瓷基板,原因在于DBC具有金屬層厚度大,結(jié)合強度高(熱沖擊性好)等特點。
3、光伏(PV)模組封裝
光伏發(fā)電是根據(jù)光生伏特效應原理,利用太陽能電池將太陽光直接轉(zhuǎn)化為電能。由于聚焦作用導致太陽光密度增加,芯片溫度升高,必須采用陶瓷基板強化散熱。實際應用中,陶瓷基板表面的金屬層通過熱界面材料(TIM)分別與芯片和熱沉連接,熱量通過陶瓷基板快速傳導到金屬熱沉上,有效提高了系統(tǒng)光電轉(zhuǎn)換效率與可靠性。
4、LED封裝
縱觀LED技術發(fā)展,功率密度不斷提高,對散熱的要求也越來越高。由于陶瓷具有的高絕緣、高導熱和耐熱、低膨脹等特性,特別是采用通孔互聯(lián)技術,可有效滿足LED倒裝、共晶、COB(板上芯片)、CSP(芯片規(guī)模封裝)、WLP(圓片封裝)封裝需求,適合中高功率LED封裝。
綜上可知,DPC陶瓷基板制作工藝以及核心技術流程包括應用,陶瓷基板雖然不是處于主導地位,但由于其良好的導熱性、耐熱性、絕緣性、低熱膨脹系數(shù)和成本的不斷降低,在電子封裝特別是功率電子器件如IGBT(絕緣柵雙極晶體管)、LD(激光二極管)、大功率LED(發(fā)光二極管)、CPV(聚焦型光伏)封裝中的應用越來越廣泛。
更多DPC陶瓷基板相關問題可以咨詢金瑞欣特種電路,金瑞欣DPC陶瓷基板金屬結(jié)合力好,可以達到15N/m,電鍍填孔厚度均勻,鍍層結(jié)構致密性好,歡迎咨詢。
通過公司研發(fā)團隊的不懈努力,現(xiàn)已成功研發(fā)微小孔板、高精密板、難度板、微型化板、圍壩板等,具備DPC、DBC、HTCC、LTCC等多種陶瓷生產(chǎn)技術,以便為更多需求的客戶服務,開拓列廣泛的市場。
? 2018 深圳市金瑞欣特種電路技術有限公司版權所有 技術支持:深度網(wǎng)